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HIGHER-ORDER-MODE EFFECTS ON THE APERTURE ADMITTANCE
OF A RECTANGULAR WAVEGUIDE COVERED WITH
DIELECTRIC AND PLASMA SLABS

By C. R. Cockrell
Langley Research Center

SUMMARY

Variational expressions of the admittance of a rectangular aperture covered with
homogenéous material are derived. The electric field inside the waveguide is assumed
to be a dominant mode plus the first higher-order symmetrical mode. Admittance expres-
sions are also given for semi-infinite media.

Admittance calculations for polystyrene slabs are given. These calculations are
shown to agree closely with the results given in the literature. Also given are calcula-
tions for lossy plasma slabs with electron densities both above and below the critical
density. For plasma slabs approximately equal to or greater than 1 Ag, the medium can
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be considered semi-infinite, particularly for overdense plasmas.

For changing slab thickness, the field of the higher-order mode has a greater effect
on the admittance in the dielectric slab than in the plasma slab. However, this effect is
small; hence, only the dominant-mode field is needed for computing aperture admittance.

INTRODUCTION

The input admittance of a waveguide-fed rectangular aperture, opening onto a diel-
ectric or plasma-coated ground plane, has been investigated by many authors (refs. 1
to 8). The variational expressions derived by most of these authors have assumed the
TE mode only as a trial field at the aperture. In papers by Galejs (refs. 1, 2, and 5), a
trial field in the aperture was assumed to be a superposition of a sine wave and a shifted
cosine wave. The expressions for the aperture admittance obtained from this trial field
were also variational; however, the infinite ground-plane structure was approximated by
a large waveguide. The symmetry of the problem suggests that a variational solution
which assumes the dominant TE mode plus higher-order odd modes may adequately
represent the field in the aperture. The number of these higher-order TE modes (TE03,
TEgyg, and so forth) needed to describe the trial field for accurate admittance calculations
is not presently available.



The investigation herein concerns the input admittance of a rectangular aperture
terminated in a flat ground plane covered with a slab of homogeneous material and
assumes the dominant TEg] mode plus a higher-order evanescent mode at the aperture.
The variational technique used to determine the admittance expressions is similar to the
one appearing in reference 6; that is, the fields in the slab and free-space regions are
derived from both the magnetic and electric vector potentials. The admittance expres-
sions are then divided into two components; namely, TE admittance and TM admittance.
These expressions are integrated numerically for a nonlossy dielectric and for lossy
plasmas in which the electron densities assume values both above and below the critical
density.

The problem of how thin a layer of plasma can be approximated by a semi-infinite
layer is also of interest because the admittance expressions for semi-infinite conditions
are simpler. Such considerations have been limited to nonlossy, underdense plasmas
(ref. 3).

SYMBOLS
Alm(a,Bn> general representation of equations (21)
a short dimension of waveguide

b long dimension of waveguide

C,C1,C3 functions defined in equations (6)

E electric field intensity

Eo amplitude of incident wave

1(8,2),2(B,2) normalized Fourier transforms of vector potential

S EaTT

gg surface-wave conductance

8s n surface-wave conductance where n refers to specific poles

’

H magnetic field intensity



I reaction integral
=1
k2 = (N2 - 1)ky27,2

k12,k22 values of k2 for specific values of Zg,

kg wave number in free space, w €0t

kx,ky Cartesian components of wave number
kz,Ol’kz,O3 wave numbers in region (defined in egs. (2))
k—zII wave number in region II

EIH wave number in region III

N index of refraction, \/e 1/60

P,Q defined by equations (A14)

R amplitude of TEy3 mode

t time

u real part of relative permittivity in plasma

v imaginary part of relative permittivity in plasma
X,¥,2 Cartesian coordinates

Yo characteristic admittance of free space

Y01, Y03 characteristic admittance of the TEg1 and TEp3 modes, respectively, in
region I (defined in egs. (2))

Yap aperture admittance



Yim term defined by equation (16)

normalized value of Y, E(E
Y03 03> Y01
Yap normalized aperture admittance
Ylm
Yim normalized expression for Y;m» v
01
Z = kyZo\N? - g2
Zo thickness of slab
ky ky
a,B polar component for —= and E’ respectively
Bn surface-wave pole
T reflection coefficient
€0 permittivity of free space
€4 permittivity of region II
€1 imaginary part of permittivity in dielectric
€R real part of permittivity in dielectric
20 free-space wavelength
Ko permeability of free space
v angular collision frequency
w angular operating frequency
wp angular plasma frequency
Superscripts:
1 waveguide region



11 material slab region

TE transverse electric

™ transverse magnetic

Subscripts:

lm integer number combination (11, 13, or 33)
X,V,Z direction components of Cartesian coordinates

A double bar over a symbol indicates a double Fourier transform. A prime denotes
a derivative with respect to one of the Cartesian coordinates.

THEORY

A rectangular waveguide is terminated in a flat ground plane of infinite extent in
both the x and the y direction. A slab of homogeneous dielectric material of thick-
ness Zg is assumed to cover the ground plane as well as the open-end waveguide. The
geometry of the problem which is divided into three regions is shown in figure 1.

In region I, which is the region inside the waveguide, a TEp; mode is assumed to be
incident upon the aperture from the left. The discontinuity at z = 0 excites reflected
modes both propagating and nonpropagating. However, since the TEp1 mode is assumed
to be incident upon the aperture, only a reflected TEQ] propagating mode is excited.
Higher-order nonpropagating modes (evanescent modes) are excited but because of the
symmetry only odd modes exist. For this problem only the TEgs eva}neéscent mode is
jw

assumed to be present. From the foregoing assumptions and with e time dependence

assumed, the fields in region I (waveguide) are written

-ik_ 42 ik z) K aZ R
ExI(Y,Z) = Eo(e z,01 + I'e z,01 cos %3—7 + Re z,03 cos 3—Zy—
E,\(y,z) = 0
y y,Z)
1 (1)
HX (y,z) =0
-ik z jk Z ik z
I, oy ( Beg,00% 32,019 o 1y 2,03% 31y
Hy'(y,z) = Yg1Eq\e ’ Te cos ¥ Y03Re »Y7 cos TJ



where

(2)

The tangential components of E and H are continuous across the boundary

z = 0; that is,

E,1(0) = EXII(OQ
Ey'(0) = Ey'H0)

Hx(0) = Hy!1(0)

(3)

Hy1(0) = HyH(O)/

From Swift (ref. 6) the electric fields of equations (3) are rewritten as

E,10) = (2—717)3 y_z _Z EXII(kX,ky,o)e‘jkxxe‘jkYy dky dk;
(4)
E,1(0) = (2;)2 5_0:0 _: 'E_yu(kx,ky,o)e'jkxxe'jkyy dkx dkyj
Hence
EXH(kX,ky,O) - Exl(kx;kyyo) = Eo(1 + I‘)Co(kx)[cl(ky) + GC3(ky)]
ﬁyn(kx,ky,o) = Eyl(kx,ky,o) =0 ©)



where

G R )
oll+T)
a/2 as kya
jleyx "
Cn(ky) = e dx
ol =\ kya
"2 2
k. b (6)
b/2 jkyy . 27b cos —— >
Cl(ky) =l v © cos £ dy =
b 2 _ 2
2 e - (kyb)
b2 typ
ikoy 3ny -67b cos )
C3(ky) =| p € Y cos oo dy = 5 5
"3 (3m~ - (kyb) )

=1II
From reference 6, the double Fourier transform of the magnetic field H

y
=1I
in terms of Eyx as

is written

= II
H H(k ky,0) = -] kg YoEx (kx’ky’O)F kY> 8'@) , (5 26_1_ <kof(0)> -
Yy X3 By kXZ +ky2 L ko kog(O) kO eg\ £'(0)

where, for homogeneous media, the boundary conditions at z=7, and z =0 give:

+ . +—II Pyt U0 SR e d 1 A
g'(0) _ k, "sin k, Z - jk; Tcos k, Z
0
5(0) —1 kM —q
cos kK, " Zg + ] sin k,"Z
I
Z
(82)
€1 &, 10 -
cos kZIIZ e _ZII sin kZHZO
£(0) Z
£f'(0) —
© kZII ink, Zg 1 kZHIcos k IIZ0
./
where
k—II = ﬂ:Vw KoEq - (kxz + kyz) (kxz + ky2 < wzuoe 1)}

(Equations continued on next page)
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1 = i+ ky® - wPugey (kxz Iy > C"2“061>
Kl = \[1?02 - (ke? + 1) (x® + 1% < ko2) ) (8b)
-/

Since tangential E and H are continuous across the boundary z =0, the reac-
tion integral (ref. 9) is also continuous; that is,

a/2 rb/2 I i a/2 ~b/2 - .
2 2 2 2
The reaction integral due to the fields inside the waveguide is determined by substituting

equations (1) and (2) into equation (9) and performing the integration. The reaction inte-

gral becomes

2 b b
I=YgyEo (1 + D(1 - D)2 - Y ,R? 52 (10)

By defining (ref. 9) Yy, as

1-T (11)

Yasz011+1"

equation (10) is written as

1

2
— 1  1iv.C (12)
Eg2(1 + T)2 03

_ 2
Yap"%

By applying Parseval's theorem, the reaction integral due to the fields inside region II
at z=0 becomes

©° nw ] -
I- (21 v S jﬂ Ey (O)HyH(O)de dky (13)
m -0 - CO

= II = II
where Ey and Hy  are the double Fourier transforms given by equations (5) and (%),
respectively.
The aperture admittance found by substituting equations (5), (7), and (13) into
equation (12) is



o
W

p=- 2Y°k°2§ § Mk_)Erl(ky)ci(ky)+2Gcl(ky)c3(ky) +G203(ky)C3(ky§)

ab(27)

2 ()
g'(0) €1 9
_< > (kog(0)> @o) <kf (O)H *+ Yo3G (14)

Equation (14) may be written as

_ 2
Yap = Y;; +2GYy3 + (Y33 + YO3)G
or
Y Y Y Y Y
ap = ¥o; Yo1 o Yoi Yo1 " Yy
where

2Y 2/ o K, \2 € 1 [Kqf(0)
0*0 v\ [ &'(0) 1{%0
Yim = ab(27m)2 y § Col(kx) Colkx) Cyky) Can(ly) 'G%) <k0g(0)> " <%> e_{,< f'(0)>

(Im = 11, 13, or 33) (16)

The normalized aperture admittance is stationary (see ref. 8) and, therefore,

ayap _ 2Y 14 . 2<Y33 YO?)G o

oG YO]_ YO]. YO
and
Y3
Y
01
G=--—— 91 (17)
Y33 . Yo3
Yo1 Yo1

Substituting equation (17) into (15) yields

2
13
Y Yor y13>
Vi1 ~o—— (18)

y =
ap ~ Yy; Yag3 , Yo3 11 y33+Yp3
Yo1" Vo1

By making the change of variable ky = kOB cos ¢ and Kky = kOB sin o, the normalized
admittances are written explicitly as



k Ba cos a2 kOBb sin a 2
Sm COS g'(8,0)
Y11= - Y01 kOBa COS @ |i2 OBb sin 0!2J i a <k0g(B, )>
B=0 "~ a=

£(8,0)
+ -6—1 cosza(qu ) Bdp da

€0 (8,0)
2 .
2k zabJ s1n 0[33 e e -3 cos2 (koﬁbzsm a)
y =/ |V T %Ama cos o — - .
: g=0~ a=0 w 72 - (kOBb sin a)z] E3'n)2 —(kOBb sin a)z]
g'(8,0) 5 (kot(8,0)]
X [sm a<k0 (B,O)> —— €08 a<f'(ﬁ’0) i Bdp da > (19)

* 2m oBa cos 2 ko Bb sin a
) Zkozab sin ——2—) 3 cos —5

kpBa cos o 9 . 2
ﬁ p=0 Ya=0| — 3 — 3m*“ - (kOBb sin a)

£(8,0)
X |-sin a<ig(fé’03)> + == coszoz(kfo,(ﬁ’o)> pdg do

Y,

. 0 37
Yo = -l — 1
03 Y01 <k0b>

The expressions Y110 Y13 and Y33 represent the following sums of TE and TM

admittances

27
yll = § S‘ All(a B)sin oz<kg (286”0))>Bd3 do

(Equations continued on next page)
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© 27 '
TE .2 [g'(30)
y13 = —y ‘g.o A13(a,B)Sln a <1—{£‘(—B,-0—)>Bd6 da

(20a)
27
yg‘?:E = -5 S‘ Agg(a,p)sin a(ki (ﬁ’g’()))> BdB da
Y11 =§O S‘O All(a"B)COS aN T(B,T) pdp do
© 27 k.£(B,0)
T™™ _ 2 [V
27 k.£(,0)
2( 0
y33 S‘ § Aggl(a, B)cos a N <f'(3,0)>BdB do
-
where
N2 = 1
o
9 i (kOBa cos oz) 2 ( oBb sin oz) 2 A
2k~“ablsin{ ————— cos!| SH—moouo
Apqla,f) = -j 2 2 i W —
Yo1 1_{038. cos o 7T2 ( OBb sin a)z
Yo L 2
[ /kx.pac 2 b si
Ana(@.f) ) 2k02ab Sln(O—B—zii) -3 cos(_pf_;l_a) 1)
13(@,B) = - —5 . SRR NN NS S
01 OBa cos o 9 M 2 ] g
% | 3 [(377) - (k pb sin c%:l[w - (kO,Bb sin oz)]
i co b si
33 P =17y ~ kopa s a 3m2 k ,Bb sin a
Yo L 2 p

The integrands of equations (20) must be examined carefully for singularities in the range
of integration before evaluation of the integrals can be performed. No singularities occur

over the range of «, but over the range of S two types can occur; namely, branch points
g'(5,0) and Ko(6,0) (ref. 6)
kog(B,O) f (B,O) ' )

and poles. The singularities are contained in the ratios

11



In the region on the real axis where those poles exist, the numerical integration is per-
formed symmetrically about each pole so that the integrals of the integrand on either
side of the poles cancel each other; that is, the integrand is antisymmetrical about each
pole (ref. 7).

For lossy materials (N2 complex), the integration of equations (20) presents no
difficulties except at the branch point g =1 where a proper root change of V1 - B2
must be taken inte account. However, for nonlossy materials the index of refraction N
is real, and thereby poles exist on the real B axis. A complete discussion of the inte-
grating problems is given in the appendix.

In Swift's paper (ref. 6), where only the dominant TE was considered, two integrals
had to be evaluated; one for the TE admittance and one for the TM admittance. The
evaluation of the admittance with the higher-order mode assumed requires six integrals;
three TE integrals and three TM integrals.

In tables I and I, a summary of admittance expressions for both lossy and nonlossy
conditions of plasmas and real dielectrics is given. Similar tables for a single-mode
assumption in the aperture are given in reference 6.

RESULTS

Equations (18) and (19) were numerically integrated for a given set of parameters
for both lossy plasma and lossless dielectric slabs. In each case the self admittance
(dominant-mode admittance) and aperture admittance (admittance with a higher-order
mode assumed) were computed by varying the thickness of material for a given set of
parameters; X-band waveguide dimensions (a = 1.016 cm and b = 2.286 cm) were used.

For the lossy plasma case, the complex index of refraction given in equation (A15)
is used in equations (19). This index of refraction is dependent upon the collision fre-
quency, the plasma frequency, and the operating frequency. To investigate the manner in
which the admittance varies as the losses increase or decrease, three collision-frequency
ratios, v/w =0.004, 0.04, and 0.4, were chosen. For each of these ratios, the self
admittance was calculated and plotted as a function of material thickness for three plasma

ratios, (%p—>2 = 0.6, 1.2, and 4.0, in figures 2, 3, and 4, respectively. All admittance cal-
culations for the plasma cases were made by assuming an operating frequency of 10.0 GHz.
The semi-infinite admittance values are also shown in these figures. The differences in
the aperture admittance and self admittance are very small; and therefore, difficult to
indicate graphically. Hence, a sample of these admittances is tabulated in table III.

For the lossless dielectric case, equations (18) and (19) were again integrated
numerically but with the index of refraction equal to a real number, independent of fre-
quency. The relative dielectric constant N2 of the material covering the rectangular

12



aperture was chosen to be 2.55. The operating frequency for these calculations was
10.5 GHz. Plots of the dominant-mode and the higher-order-mode aperture admittances

as a function of material (polystyrene) thickness are shown in figure 5 which also includes
data obtained from reference 5.

The normalized electric field distribution across the aperture is given as

y
Ty 13 3y
COS —— - COS
Ex()| b V33 +Yo3 . b o2
EX(O) ) Y13
Y33 * Vo3

where y;5 and ygg are determined from equations (19). In figure 6, equation (22) is
plotted for several slab thicknesses of polystyrene. The electric field distribution with

only the dominant mode assumed is also included in this figure. The electric field dis-

tributions for varying plasma densities are shown in figures 7 and 8.

The aperture-admittance equations for a semi-infinite medium are obtained from
equations (19) by allowing the thickness Z, to approach infinity or by using the method
described by Deschamps (ref. 10). These equations are written explicitly as

Ba cos a 2 OBb sin « 2
Zk 2ap s1n 2 cos S\
Y11 7 B Y - B S
11 Y01 kOBa cos « 2 - (kO,Bb sin a)z

X —sinza(—jVNz [32) + cos oz JBdB da
B

Ba cos a k- Bb sin a
2k 2ab sm 0 -3 cos2 (—0—2——
Y13 © YOl ' kO,Ba cos a '
a=0

—— [772 kOBb sin o ][37r) (kOBb sin oéz]

X —s1n2a( -j N2 - 32)+ cos? BdB do
N2 32

(Equations continued on next page)

13



o0 27 K 2 ) 9

9 . [kgBa cos a kyBb sin o

2k0 ab sin| ————— 3 cos ——g

y = -j —_ & . N & 1

33 Yo1 kofa cos @ | |(3m)2 - (kB sin a)?
Yo Jg=0Ja=0 2 > @3)
SN2
X -sinzoz(—j'VN'2 - 32)+ cosZa S L pdg da
N2 - g2 )

where the semi-infinite medium can be either a dielectric or plasma with a real or com-
plex relative dielectric constant N2, Since a branch point now occurs at B = N, a proper
root change must be made in accordance with equation (16). The resulting integrations
can then be substituted into equation (18) to obtain the total aperture admittance.

For plasma thicknesses greater than 1 centimeter % A), equations (23) can be used
to compute the admittance, particularly for the overdense plasmas. This approximation
can be observed in figures 2, 3, and 4.

DISCUSSION

The previously derived expressions of the admittance of a rectangular aperture
covered with a slab of homogeneous material are variational. Therefore, because of the
stationary character of these expressions the variational procedure was used to deter-
mine the coefficient of the higher-order mode TEOS‘ This procedure only assures that
for the chosen trial field the solution will best approximate the exact field if it were
known.

The admittance values obtained for an aperture covered with varying thicknesses
of polystyrene material were compared to the results obtained by Galejs (ref. 5) for the
same material. For the most part, the calculations for the assumed trial fields agree
closely with one another. The major disagreements occur for a thickness of approxi-
mately 0.5 cm (0.1757\0) for conductance and 0.8 cm (O.Z'?QAO) for susceptance. The dis-
crepancies in the two sets of calculations can possibly be attributed to the assumptions
made on the termination of the rectangular aperture; that is, Galejs assumed a small
guide radiating into a larger one filled with polystyrene material, whereas this paper
assumes a waveguide radiating into a laterally unbounded slab of polystyrene material.
Other sources of error could possibly be caused by the actual numerical evaluation of the
equations on the form of the trial aperture field. For increasing slab thickness, the con-
ductance and susceptance approach their semi-infinite values in an oscillatory manner;
that is, the admittance oscillates in a decaying manner about its semi-infinite value.
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For plasma slabs the admittance becomes quite insensitive to increases in slab
thickness, particularly for overdense plasmas. However, for thin plasma layers, appre-
ciable changes in admittance values were observed. These observations are in agree-
ment with Villeneuve (ref. 3). For overdense plasmas a slab thickness of approximately
1.0 cm (-;- kO) can be used to approximate semi-infinite conditions. However, for under-
dense plasmas, the approximated slab thickness is not so well defined. The susceptance
for this case may be inductive or capacitive depending on the thickness; therefore, in
choosing the thickness to approximate semi-infinite conditions the magnitude as well as

the phase of the semi-infinite admittance must be considered.

Two expressions representing the admittance of a rectangular aperture covered with
slabs of material were derived by Galejs (ref. 5). The expression for thin layers assumed
a larger waveguide termination filled with material and the expression for thick layers
assumed laterally unbounded material. In the thick-layer formulation the admittance cal-
culations are valid for slab thicknesses greater than a wavelength. For the thin-layer
solution the conductance curves vary smoothly for slab thicknesses less than a wave-
length, but, for thicknesses greater than a wavelength, the curves oscillate. The average
of this oscillatory plasma conductance was shown to be approximately equal to the values
obtained by using the thick-slab solution. Therefore, by using these average values, the
admittance computations for this case can be used for all thicknesses.

The expressions derived in this paper give a compact representation of the aperture
admittance for dielectric or plasma-coated rectangular apertures. No restrictions in
regard to thickness are placed on these coatings; hence, the determination of the aperture
admittances for all thicknesses can be obtained by using the laterally unbounded model.

In reference 3, a qualitative discussion was presented in regard to the different
effects that plasma and dielectric slabs may have on the aperture admittance. The
essence of this discussion was that dielectric slabs would have a greater effect than the
plasma slabs. The calculations obtained with the higher-order-mode assumption sub-
stantiate this argument. Although, a slab-thickness change had more effect on the admit-
tance in the dielectric slab than in the plasma slab, the effect was small; therefore, the
computations for plasma and dielectric slabs can be simplified by assuming only the
dominant mode in the aperture.

For changing slab thickness in the dielectric case a significant change in the elec-
tric field distribution was observed. However, in the plasma case the distribution across
the aperture varies only slightly for varying slab thicknesses. A greater variation in the
distribution for the dielectric case is expected since the dielectric slab has a greater
effect on the aperture admittance than does the plasma slab. For increasing electron
density, the electric field distribution for the higher-order-mode assumption is shown to

15



approach the distribution obtained when only the dominant-mode field was assumed. This
agrees with the general observation made by R. L. Fante in reference 11.

CONCILUDING REMARKS

Variational expressions of the admittance of a rectangular aperture covered with
homogeneous material are derived. The electric field inside the waveguide is assumed
to be a dominant mode TEqq plus the first higher-order symmetrical mode TEgp3.
Admittance expressions are also given for semi-infinite media.

Admittance calculations for polystyrene slabs are given. These calculations are
shown to agree closely with the results given in the literature. Also given are calcula-
tions for lossy plasma slabs with electron densities both above and below the critical
density. For plasma slabs approximately equal to or greater than %7\0, the medium can
be considered semi-infinite, particularly for overdense plasmas.

For changing slab thickness, the field of the higher-order mode has a greater effect
on the admittance more in the dielectric slab than in the plasma slab. However, this
effect is small; hence, only the dominant-mode field is needed for computing aperture

admittance.

For changing slab thickness in the dielectric slab, a significant change in the elec-
tric field distribution was observed. In the plasma slab the distribution across the aper-
ture varies only slightly for changing slab thickness. For increasing electron density,
the electric field distribution for the higher-order-mode assumption is shown to approach
the distribution obtained when only the dominant-mode field is assumed.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., June 18, 1968,
125-22-02-02-23.
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APPENDIX
PROBLEMS IN INTEGRATION

The expressions appearing in equations (20) are computed numerically by breaking
up the integral over B as suggested in tables I and II. Contour plots showing path and
surface-wave poles for N2>1 and N2<-1 are given in figure 9. For N2 > 1 (real
dielectrics) the contour integral along the real g axis for the TE and TM admittances
(yll’ Y13 and y33) is shown in figure 9(a). Because this time dependence is assumed

to be ejwt, the branch cut at 8= 1 must be chosen as shown to meet the requirements
T, ihat
; that is,

for the proper root of k,
T A (62 < 1)
I, = ikgVe? - 1 (62> 1)

In the interval between =1 and B =~ for N2 > 1, the integration contributes only

to the susceptance in the admittance expressions for both TE and TM modes. In the range
from B=0 fto B=1 the integration contributes both to the conductance and susceptance.
The only other contribution to the conductance is due to the residues of the simple poles

in the interval 1 < g8 <N. The simple poles are termed ''surface-wave poles.” The con-

ductance as a result of the surface-wave poles is expressed as

(A1)

(N2 - an)gozw Ay o (@ Br)sina da W

o (w2 o) s 2k, Zo|N2 - gy’
0Zofl -

_ (Bn® - 1) 2kozo\/N2 - B2

TE . T .
g = -7 Res( E) =jm
S,Illm ] ylm N2>1 ]

>(A2)

9 27 24
- N S\O Alm(a,Bn)cos o do
€s,n

jm
>Im

. ™ -
= ~7j Res(Ylm )N2>1 = . 2 o >
(N2 - 1) sin 2kOZo\IN - Bn

k D
(Bu? - ) 2k Zo|NZ - B2

OZ01+

n

When I and m equal 1, equations (A2) are identical to the surface-wave conductance
appearing in Swift's paper (ref. 6); that is,
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APPENDIX

i 2 2
. <kOBna cos aﬂ (kOBnb sin a)
sin\————) | cos\————
2 sinq da

N2 - Pn )
. ( koBya cos a J 72 - (kOBnb sin oz)z

g = —_—
s,n = Yoy y 2
ﬁ (NZ _ 1) sin 2k0Z0 N - Bn

koZo| 1 = 725
o (Bn ) ) 2kyZo N2 - g2
(A3)
i
. (koﬁna cos aﬂz < Bpb sin a) 2
sin\—————J| | cos
N2 2 cosZa da
9 kgPna cos @ J 72 - ( Byb sin a)
™ _ 47rk0 ab 0 9
s,n - Yop . 5 5
—_ 2 _ sin 2k,Z - B
- 1) 2
_ (n 2k Zo\N2 - Bn

Y

The poles of g9 and fz given in tables I and II for N2 > 1 are found from the zeros of
"\

tan kozodN2 - p2=- ———-———W‘Z‘Bz (TE)
-1 (a9)

tan kozo\{frz - p2 = N {e? -1 (TM)

NZ"BZ J

By making the substitution Z =kyZ, \5\—12 - 32, equations (A4) can be written as

2 272 h
cot 7 = -\(N ;);O 2o (TE)
(A5)
(Nz - )kozzoz
tan Z = Nz\l = -1 (TM)J

By plotting each side of equations (A5) as a function of Z to the same scale, the pole
locations are then found at the intersections of these curves. These two equations are of
the same form as the equations in Weeks (ref. 12). The TE surface-wave modes will not
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be present if the proper thickness of material in wavelengths is selected at the onset of
surface waves (8 = 1), such that
Zo < 1

o (A6)
X
0 4\N2-1

However, cutoff conditions can be adjusted by changing the thickness in wavelengths to
correspond to odd multiples of /2 (that is, cot kQZO\}N2 -1= %, 3 -725, 5 lzf., and 80 forth),
or
Zo 1 3 5
A - 4 ’
0 4yN2-1 4W2-1 4ayN2-1

(TE) (AT)

For TM surface-wave modes there is no cutoff frequency because the lowest TM mode is
the zero mode. Hence, for the TM mode the thickness in wavelengths corresponds to
integer multiples of Z /)\0 ; that is,

Z
2oy, 1 1 3 oL (TM) (AS8)
0 ol -1 2.1 2(n%-1
Z
Generally, equations (A7) and (A8) are expressed as TOQ =2 with n= 0,1, 2 3,
4\YN“ - 1

and so forth with TM having even modes and TE having odd modes. These cutoff condi-
tions are computed at the onset of surface waves (8 = 1). Typical sketches exemplifying
the technique of determining the roots (zeros) of equations (A5) are shown in figure 10 for
two arbitrary values of k2 = (N2 - l)kOZZOZ. The cutoff conditions for the TE modes are
at the zeros of cot Z as shown in figure 10(a). The cutoff conditions for the TM modes
are at the zeros of tan Z as shown in figure 10(b). These sketches are similar to the
ones given by Weeks (ref. 12).

For the case N2 < -1, only a single surface-wave pole occurs for the TM mode.
Figure 9(b) shows the path of integration and the surface-wave pole. No surface-wave
poles occur for the TE mode. This case discusses a lossless overdense plasma for which
the contribution of the residue to the TM admittance expression is (ref. 6)

™ lN2|§027T A cos2a do

gor = -7 Res(y/0) = eir " -
k -
e (867 - 1) 2k Zo|[[N?] + o2

(A9)

where g, is a root.
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For the lossy case N2 complex no poles occur on the real g axis, therefore
no difficulties arise in the integrations. However, a proper root change at 8=1 in

accordance with equations (A1) must be taken into account since this is a branch point.
The complex index of refraction N is written, in general, as

N2 =y - jv (A10)
where <
w.\2
=
E 1+ (_V_)Z
“ > (A11)
noe
v = 1 PAWAW
RRNC
t\@
J
For a lossy dielectric Wy =V = 0; therefore,
€ € €
N2= R L <_E > 1) (A12)
o 0 o
then
W2 g2=p-iQ
(A13)
tan k ZOP—Jtanhk Q
tan k Zo\N2 - g2 = 0 070
0 1+ jtan kOZ P tanh kOZ Q
where
- V2 )
€ € €
-6
2 0
- (A14)
r ——s 1/2
1| fe € 9 /€
oA
V2| \o 0 0
- «
For a lossy plasma eR/eo =1 and 61/60 = 0; therefore,
e SENCE
1 _N2-1- 0/ AN (A15)

‘0 1+ (%)2 14+ (%)2
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then
N - 2=P-iQ
tan k,Zo N2 - g2 = tan koZoP - j tanh k;ZoQ
0“0 1+ j tan kgZ P tanh kyZ Q
where

. 5 N1/2
2 2 2
p=21d1- 222-32+ 1- (%’)2)2_ 2 (%);’022 >
| BN (AR N INC
S/
~ \ . - 2_121/2
B = I O = A I O
Bl e () 1+ (%)
| i
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ADMITTANCE EXPRESSION
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TABLE III.- NORMALIZED ADMITTANCE CALCULATIONS FOR PLASMA SLABS

Zo,
cm

|

2
“p
w

v/w

0.004

0.04

0.4

Self

Aperture

Self

Aperture

Self

Aperture

© 0.5, 0.6 0.3920 - j0.0310

10.2553 - §0.0281
0.2274 + j0.0703
0.2789 + j0.0343
0.1154 - j0.6376
0.0287 - j0.6255

2.0, 1.2 {0.0059 - j0.6155

1.0 0.6
2.0 0.6
3.0 0.6
0.5, 1.2
1.0 1.2
3.0 1.2
0.5 4.0
1.0 4.0

10.0043 - 10.6143
0.0628 - §1.9783
'0.0067 - §1.9995

2.0 4.0 (0.0056 - j1.9999
3.0 : 4.0 |0.0056 - j1.9989

0.3979 - j0.0289
10.2599 - j0.0239

10.4087 - j0.0443
10.2755 - §0.0414

0.4144 - j0.0423

10.2801 - j0.0375

10.5929 - j0.0990
10.4785 - j0.0950

10.2329 - §0.0767 10.2517 + j0.0496 1 0.2572 + j0.0555 0.4813 - j0.0388
0.2851 + 0.0295 ' 0.2946 + j0.0187 0.3006 + j0.0232 0.4865 - j0.0550 0.4919 - j0.0529
0.1162 - j0.6362 0.1528 - j0.6361 0.1537 - j0.6348 0.4921 - j0.5824 0.4940 - j0.5819

10.0289 - j0.6235  0.0646 - j0.6260 . 0.0649 - j0.6240 0.3875 - j0.5759 0.3891 - j0.5745
0.0059 - §0.6133 10,0429 - j0.6151 | 0.0431 - §0.6129 0.3756 - j0.5550 ,0.3772 - j0.5533

10.0416 - j0.6138 -0.0418 - j0.6116 0.3772 - j0.5544 0.3788 - §0.5527
0.1339 - j1.9663 0.1341 - j1.9661 .0.5879 - j1.8670 0.5881 - j1.8669
0.0572 - j1.9981:0.0572 - j1.9979 0.5136 - j1.8598 0.5137 - §1.8596
0.0558 - §1.9983 :0.0558 - 1.9981 0.5128 - j1.8587 0.5129 - j1.8585

0.0558 - j1.9984 10,0558 - §1.9982 0.5128 - j1.8587  0.5129 - j1.8585

0.0043 - j0.6121
0.0629 - i1.9782
0.0067 - §1.9993
0.0056 - §1.9997

10.0056 - 1.9997

0.5980 - j0.0989
0.4825 - j0.0928
0.4868 - j0.0364
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dielectric or plasma

Region TI1:
free space

R A Y

Region I

Figure l.- Rectangular waveguide covered with a slab of homogeneous material of infinite extent in the x and y directions.
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{a) Normalized conductance.

Figure 2.- Admittance calculations for a rectangular aperture, covered by varying thicknesses of plasma slabs having a colfision-frequency ratioc v/u of 0.004,
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{a} Normalized conductance.

Figure 3.- Admittance calculations for a rectangular aperture, covered by varying thicknesses of plasma slabs having a collision-frequency ratic v/w of 0,04,
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Figure 4.- Admittance calculations for a
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rectangular aperture, covered by varying thicknesses of plasma slabs having a collision-frequency ratic v/u of 0.4,




G¢

Normalized susceptance

0.5

O 0.6

Semi-infinite valuesd 1,2

Free-space value
&
0
R
FoL=2) =06
‘ w
iy w\2
0.5 = (—p') = 1.2
l‘L w
3
ol
.
-1.5 |-
|
2
(32) = 4.0
-2.0 N 1 - 1 N A _
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Zo, CM

(b} Normalized susceptance.

Figure 4.- Concluded.

O 4.0



Normalized conductance

Normalized susceptance

3.0

N
o

1.

2.

Semi-infinite value

0]
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Z,, cm
Dominant mode
——-—Higher-order mode
or e Galejs' trial function
(ref. 5)
0
Semi-infinite value
AN
0]
o 1.0 1.2 1.4 1.6 1.8 2.0

Zo ; Ct

Figure 5.- Admittance values as a function of slab thickness for polystyrene material.
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Figure 6.- Normalized electric field distribution across the rectangular aperture for varying thicknesses of polystyrene slabs.

37



1.0

0.9

(=]
[« <]

\

E.(y)
E(0)
e

o
o

0.5

0.4

Normalized electric field,

0.3

0.2

@ Zy = 0.5 cm.

2

(]

Figure 7.- Normalized electric field distribution across the rectangular aperture for varying electron densities <TD> with a collision-frequency
ratio v/w of 0.004.

38



Normalized electric field,

1.0

0.9

0.6

(=]
wn

(=]
s

o
w

0.

1

0.2 0.3
~_
b
(b} Zg = 3.0 cm.

Figure 7.- Concluded.

0.4

0.5

39



|

Ex(y)
Ex(0)

Normalized electric field,

@ Zy=0.5cm.

2
W
Figure 8.- Normalized electric field distribution across the rectangular aperture for varying electron densities <Tp> with a collision-frequency

ratio v/u of 0.4,

40



|

Ex(y)
E_(0)

Normalized electric field,

1.0

009

0.8

o
~

o
[=))

o
w

o
o]

(=]
w

0.2

0.1

[

0.1

0.2 0.3

- A
b

(b} Zg = 3.0 cm.

Figure 8.- Concluded.

0.4

0.5

41



Im 8

%

xX 2

— Real B

xX X

{

With losses, poles move off axis

{a) Nonlossy dielectric for TE and TM modes.

Im B

T A - —~~Real 8

One surface-wave pole

(b) Overdense nonlossy plasma for TM mode.

Figure 9.~ Contour plots showing path and surface-wave poles for N2> 1 and N2< -1

42

e wmm oaw = mm (X -y [Nl 1] M — mm nm i mm mi | 11 1m



k2 -1
722

oo e - —— -

cot Z or -
[e]
o
(a4
™
e wm T am s e e = - — -
(9%)

Root for k3 /

Roots for ko

(a) TE case.

Root for k; . Roots for k3
| ‘ 1
 — l
| - | §
| | !

'
: | |
i 8 | :
b | '
1 1
= {
N ! - 7
i
-Tm/2 0 3m/2 51m/2
l ; |
{tan A | tan Z i
1 l
| I i
! I
! [
n | [
| ¢ |
| | '
i '

() T™ case.

Figure 10.- Graphical method of determining cutoff conditions and surface wave poles for TE ainid TM admittance for N2 < 1.

NASA-Langley, 1968 —— 7 Li=6175

43



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WasHINGTON, D. C. 20546

OFFICIAL BUSINESS

e d
Al FhnlE

WIRTL AnD

-

- - 10 H
ATy T il

0ol 37 v
B [ AP \; K

AR

405

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION

FIRST CLASS MAIL

682174 00%03
Ladarad DRy /s aFdL/ _
CroRASEy wEV MEXICU B5/11
AOTING CHICF TrCh. LIf
POSTMASTER: If Undeliverable ( Section 158

Postal Manual) Do Not Return

“The aeronautical and space activities of the United States shall be
conducted 5o as to contribute . . . to the expansion of buman krowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

— NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include conference proceedings,
monographs, data compilations, handbooks,
sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications, Publications include Tech Briefs,
Technology Utilization Reports and Notes,
and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546



